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Stabilizing unstable discrete systems
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A general method for stabilizing unstable discrete systems to a fixed point or high-period orbit is developed
analytically and numerically in this paper. It is shown that the method can be equally applied to the systems
with one or more positive Lyapunov exponents. Moreover, the method does not require a prior analytical
knowledge of the system under investigation, nor any additional control parameters.
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I. INTRODUCTION

In recent years, the research of stabilizing unstable sys
to a fixed point or high-period orbit, i.e., controlling chao
has attracted much attentions in nonlinear sciences and
ticularly in physics, chemistry, and biology. A large numb
of control methods have been developed and are being
plied to real systems@1–11#. Many of them are extensions o
generalizations of the original work of Ott, Grebogi, a
York ~OGY! @1#. The OGY method and its variants are bas
on a parametric perturbation mechanism. And at least
accessible tuning parameter is required in advance for u
the OGY method or its variants. However, in many practi
situations, such a parameter often cannot be found at al
addition, most of the methods are designed for~or restricted
to! such unstable systems that have just one posi
Lyapunov exponent. Recently, Yang, Liu, and Mao~YLM !
@12# presented one new method. The YLM method can
successfully applied to control the unstable systems w
multiple positive Lyapunov exponents, i.e., the so-called
perchaos. On the other hand, the YLM method still ma
use of a parametric perturbation as like the OGY method

In this paper, we pursue to develop a method that can
applied to both chaos and hyperchaos. Furthermore, the
posed method does not require any adjustable control pa
eters of the system.

The paper is organized as follows. In Sec. II, the mec
nism of the control method is analyzed in detail. In Sec.
we extend the method introduced in Sec. II to the stabili
tion of higher-period orbit. Then several typical chaotic a
hyperchaotic systems are taken as numerical examples
lustrate the applicability of the proposed method in Sec.
At the end of the paper, some discussions and conclus
are given.

II. THE METHOD

Consider ann-dimensional dynamical system defined b

xk115F~xk!, ~1!

where xPRn is an n-dimensional vector,F is a nonlinear
vector valued function.

Let xf be the fixed point of the map~1!. In order to sta-
bilize a chaotic orbit to this fixed point, we take a variab
feedback control described by
1063-651X/2001/64~4!/046209~5!/$20.00 64 0462
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xk115F~xk!1M „F~xk!2xk…, ~2!

whereM is ann3n matrix that we are going to determin
definitely in this paper. Equation~2! takes the form of the
so-called adaptive adjustment mechanism~AAM ! introduced
in Ref. @13#. However, the matrixM is restricted to be a
diagonal matrix there. This is not the case in our method
terms of the eigenvalue analysis@13#, it is found that AAM
can be applied to some special types of the fixed points,
even by using the so-called nonuniformly AAM. In th
work, we take a similar idea as Yang, Liu, and Mao@12# to
determine the matrixM . Now let us define an infinitesima
deviation ofxk from xf asdxk5xk2xf . Then from Eq.~2!,
one has

dxk11'Jdxk1M ~J2I !dxk , ~3!

whereJ5(]F/]xk)uxk5xf
is the Jacobian matrix of the origi

nal systemF evaluated at the fixed pointxf and I is the n
3n identity matrix. In practice, the matrixJ is experimen-
tally accessible by taking the well-known embedding tec
nique @1,14#. The goal of controlling here is to mak
limk→`udxku→0 ~which implies thatxk→xf , ask→`!. For
this aim, we require

dxk115Qdxk , ~4!

whereQ is ann3n matrix and takes the form

Q5S q1 0

0 q2
D , ~5!

where q1 ,q2P(21,1) are constants. Substituting Eq.~4!
into Eq. ~3! and eliminatingdxk , we have

M5~Q2J!~J2I !21, ~6!

where we have assumed that the inverse matrix (J2I )21

exists. One special form of the matrixQ is Q5qI , i.e., by
settingq15q25q. Then the matrixM becomes

M5~qI2J!~J2I !21, ~7!

whereq is a constant andqP(21,1) as mentioned above.
©2001 The American Physical Society09-1
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Note that although it is just the discrete time systems t
are discussed by now, the present approach can also b
plied to control the flows just by taking the correspondi
Poincare´ sections.

The control method as given by Eq.~7! does not require
any prior analytical knowledge of the system under inve
gation, since the elements of matrixJ can be obtained from
experimental data by using the known embedding techniq
As concerns the size of converging region, it is also un
investigation and will be reported elsewhere. In additio
similar to the YLM method, our method is also formulate
for an n-dimensional system withn being an integer. So ou
method can then be applied to any finite-dimensional sys
in principle, including chaotic and hyperchaotic system
Furthermore, by choosing an appropriate value ofq between
21 and 1, one may have an optimal control through Eq.~7!.
In addition, it should be noted that the method proposed h
cannot be applied to the cases in which one eigenvalueJ
equals 1 or even some eigenvalues are close to 1 from p
tical point of view.

On comparing with the YLM method, first, our metho
does not require any adjustable controlling parameters in
vance, and so it can be applied to much more extensive
tems. Second, once the constantq is chosen in the range o
~21, 1!, thenM is definitely determined and need not to
changed with the discrete time. Therefore it is much simp
to implement.

On the other hand, by comparison with the AAM, th
main progress of our method is that it can be equally app
to different types of the fixed points particularly to tho
ones to which AAM cannot be applied at all, as illustrated
our examples.

III. HIGH-PERIOD ORBIT

The method developed in Sec. II can also be applied
stabilize a high-period orbit. Assuming one want stabilize
period-p orbit, i.e., the orbit$x1,...,xp%(p.1). By replacing
F(xk) with F(p)(xk) in Eq. ~2!, one gets

xk115F~p!~xk!1M „F~p!~xk!2xk…, ~8!

whereF(p)(xk) denotesp times iterations ofF(xk). Repeat-
ing the process in Sec. II, we finally have equation analog
to Eq. ~6! or Eq. ~7! as

M5~Q2 J̃!~ J̃2I !21 ~9!

or

M5~qI2 J̃!~ J̃2I !21, ~10!

where

J̃5S ]F~p!~xk!

]xk
D

xk5x1

is the Jacobian matrix ofF(p)(xk) evaluated atx1,Q takes the
form of Eq. ~5! and qP(21,1) is a constant as mentione
previously. It is easy to know that
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J̃5)
i 51

p

Ji , ~11!

where

Ji5S ]F

]xk
D

xkÄxi
, i 51, . . . ,p.

The question now is how to locate the unstable period or
In practice, there is lot of literature concerning this proble
@15–18#. In this work, we take the algorithm presented
Schmelcher and Diakonos@18#.

IV. NUMERICAL EXAMPLES

The control method given by Eq.~6! or Eq. ~7! can be
applied to both chaotic and hyperchaotic systems. In the
lowing, we take two systems as examples. We first discu
chaotic map and then a hyperchaotic map to illustrate
method.

A. Controlling chaos

Consider the He´non map@19# described by

xk115a2xk
21byk ,

yk115xk , ~12!

wherea,b are the parameters, and we choosea51.4 andb
50.3 in this work. This map has two fixed points:xf

(1)

'(0.883 89,0.883 89) andxf
(2)'(21.583 89,21.583 89). In

Ref. @12#, they belong to two different types of fixed poin
and require to be stabilized separately according to
simple and nonuniformly AAM. This is not the case in th
research. Two fixed points can be equally dealt with by us
the method proposed above. Here we just take the sec
one as an application. The Jacobian matrix corresponding
fixed pointxf

(2) is

J5S 22xf b

1.0 0.0D ,

where xf521.583 89 andb50.3. Then from Eq.~7!, we
have

M5S q12xf2b

22xf211b

~q21!b

22xf211b

q21

22xf211b

q~2xf11!2b

22xf211b

D ,

whereqP(21,1) is a constant. Choosing the parameteq
50.5, one gets

M5S 21.202 61 20.060 78

20.202 61 20.560 78D .

Then the equation analogous to Eq.~2! is
9-2
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xk115a2xk
21byk21.202 61~a2xk

21byk2xk!

20.060 78~xk2yk!,

yk115xk20.202 61~a2xk
21byk2xk!20.560 78~xk2yk!.

~13!

Evolving this controlling system from an arbitrary initia
point in attracting basin, it is found that the orbit is stabiliz
to the fixed pointxf

(2) monotonically. The numerical result
are shown in Fig. 1. In Figs. 1~a! and 1~b!, xk versusk andyk
versusk are plotted for two different parametersq. In Fig.

FIG. 1. Numerical results of controlling He´non map.~a! xk

versusk for q520.5 and 0.3, respectively;~b! yk versusk for
q520.5 and 0.3;~c! Three orbits starting from different initia
points are stabilized to the fixed point~21.583 89,21.583 89!, for
q50.5.
04620
1~c!, three orbits starting from different initial points are st
bilized to the desired fixed point.

B. Controlling hyperchaos

In order to compare our method with the YLM metho
and the AAM more definitely, let us discuss the followin
map @20# described by

xk115122~xk
21yk

2!1p,

yk11524xkyk1q. ~14!

To be an illustrative example, this map can be investiga
more analytically. In Ref.@12#, the parametersp and q are
taken to be the adjustable controlling parameters. And
adjustingp and q, the unstable orbit is stabilized to the d
sired fixed point. However, we may takep5q50 in this
work. Now, there exist four different fixed points for ma
~14!. Here we take only one of them, i.e., the point~20.25,
0.75!, as an application. For this fixed point, the Jacob
matrix is

J5S 1.0 23.0

23.0 1.0 D .

The two eigenvalues ofJ arel1522.0 andl254.0, respec-
tively. According to Eq.~7!, one knows that

M5S 21.0 2
q21

3

2
q21

3
21.0

D ,

whereq is a constant andqP(21,1). The two eigenvalues
of M are 211(q21)/3 and212(q21)/3, respectively.
Since the constant satisfiesqP(21,1), the eigenvalue21
2(q21)/3P(21,1). That is, one of the unstable direction
becomes stable under the control. Then the equation an
gous to Eq.~2! is

xk115122~xk
21yk

2!2@122~xk
21yk

2!2xk#

2
q21

3
~24xkyk2yk!,

yk11524xkyk2
q21

3
@122~xk

21yk2!2xk#

2~24xkyk2yk!. ~15!

The numerical results are shown in Fig. 2, forq50.5. In
Figs. 2~a! and 2~b!, the curves ofxk versusk andyk versusk
are plotted, respectively. And in Fig. 2~c!, three orbits start-
ing from different initial points are stabilized to the fixe
point ~20.25, 0.75!. It is shown that the unstable orbit i
stabilized to the desired fixed point monotonically.

Now, for an illustration, we show how a period-2 orb
$x1,x2% of system~14! is stabilized with the help of the ap
9-3
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proach described in Sec. III, herex1'(0.809 02,0.0) and
x2'(20.309 02,0.0). For pointx1, it is easy to get

J15S 23.236 08 0.0

0.0 23.236 08D

FIG. 2. Numerical results of controlling hyperchaotic syste
~14!. ~a! xk versusk for q50.5 and20.5; ~b! yk versusk for q
50.5 and20.5; ~c! Three orbits starting from different initial point
are stabilized to the fixed point~20.25, 0.75!, for q50.5.
tt

04620
and

J25S 1.236 08 0.0

0.0 1.236 08D .

Then in terms of Eq.~10!, one has

M5S 20.2q20.8 0.0

0.0 20.2q20.8D , ~16!

where21,q,1 is a constant as mentioned previously. A
ter making use of Eq.~8!, it is found that the desired point i
successfully stabilized as shown in Fig. 3. In Fig. 3, t
control imposed on the system is removed and the system
evolve freely, when the error between the two near iterati
is smaller than 10210.

V. CONCLUSION

In this work, we show how an unstable system, with o
or more positive Lyapunov exponents, is stabilized by us
a different general method. It is found that the propos
method neither requires a prior analytical knowledge of
underlying system nor any adjustable control parameter
advance. Therefore, it can be applied to a very large rang
systems, in particular, hyperchaotic systems.
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FIG. 3. Stabilizing a unstable period-2 orbit of hyperchao
system~14!. Here we chooseq50.1 in the computation. When th
difference between two neighboring iterations is smaller th
10210, the control imposed on the system is removed.
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